Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:
а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено
б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено
в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено
г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено
д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).
Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)
ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д)
x^2=8x-17
x^2-8x+17=0
Д=(-8)^2-4*17=64-68 <0
14x=-49-x^2
X^2+14x+49=0
D=14^2-4*49=196-196=0
x=-14/2=-7
36+17x=-2x^2
2x^2+17x+36=0
D=17^2-4*2*36=289-288=1
x1=-17+1/4=-16/4=-4
x2=-17-1/4=-18/4
7x^2-3x=4
7x^2-3x-4=0
D=-3^2+4*7*4=9+112=121=11^2
x1=3+11/14=1
x2=3-11/14=-8/14
0.81-x^2=0
-x^2=-0.81
x^2=0.81
x=+-0.9
5x+9x^2=0
9x^2+5x=0
x(9x+5)=0
x=0 9x=-5
x=-5/9
1+2x=8x^2
-8x^2+2x+1=0
D=2^2+4*8=4+32=36=6^2
x1=-2+6/-16=-1/4
x2=-2-6/-16=1/2
19x-6x^2-10=0
-6x^2+19x-10=0
D=19^2-4*6*10=361-240=121=11^2
x1=-19+11/-12=-8/-12=2/3
x2=-19-11/-12=2.5
8+2x^2=0
2x^2=-8
x^2=-4 нет корней
40x-25-16x^2=0
-16x^2+40x-25=0
D=40^2-4*16*25=1600-1600=0
x=-40/-32=10/8=5/4
-36-x^2=-12x
-x^2+12x-36=0
D=12^2-4*36=144144=0
x=-12/-2=6