Доказательство: мы знаем, что любое натуральное число начинается от 1, 2, 3, и т.д, следовательно: подставляя в выражение любое натуральное число (вместо к =1, л=2) можно вычислить и доказать, что м = 3 * 1+ 5 * 2 больше 8, 3 + 10 больше 8 13 больше 8 Доказано.
Если А и А+1 оба делятся на 8, значит младшая цифра числа А обязана быть 9, чтобы был перенос в разряд десятков при добавлении 1 (если бы переноса не было, то суммы цифр чисел А и А+1 тоже отличалась бы на 1 и, значит, обе суммы одновременно не могли бы делиться на 8). Если средняя цифра равна 1, то условие 3) будет автоматически выполнено, потому что любое целое число кратно единице. Тогда, чтобы сумма цифр делилась на 8, первую цифру можно взять 6: получается число A=619, 1) Сумма цифр А равна 6+1+9=16 - делится на 8 2) А+1=620. Его сумма цифр равна 6+2=8 - делится на 8. 3) 6+9=15 кратно 1.
Если А и А+1 оба делятся на 8, значит младшая цифра числа А обязана быть 9, чтобы был перенос в разряд десятков при добавлении 1 (если бы переноса не было, то суммы цифр чисел А и А+1 тоже отличалась бы на 1 и, значит, обе суммы одновременно не могли бы делиться на 8). Если средняя цифра равна 1, то условие 3) будет автоматически выполнено, потому что любое целое число кратно единице. Тогда, чтобы сумма цифр делилась на 8, первую цифру можно взять 6: получается число A=619, 1) Сумма цифр А равна 6+1+9=16 - делится на 8 2) А+1=620. Его сумма цифр равна 6+2=8 - делится на 8. 3) 6+9=15 кратно 1.
м = 3 * 1+ 5 * 2 больше 8,
3 + 10 больше 8
13 больше 8
Доказано.