№155 x√-19x+18=0 x√+17x-18=0 (x√-19x+18)²=(0)² (x√+17x-18)²=(0)² x²-19x+18=0 x²+17x-18=0 D=361-72=289 D=289+72=361 x1=(19-17)/2=1 x1=(-17+19)/2=1 x2=(19+17)/2=36/2=18 x2=(-17-19)/2=-36/2=-18 № 157 решать нужно через теорему виета. аx²+bx+c=0 x1+x2=-b/a x1*x2=с/а теперь просто подставь значения вместо х1 и х2 в первом x1+x2=-b/a у тебя будет значение b во втором x1*x2=с/а у тебя будет значение с а=1 потом в уравнение подставь значение x²+bx+c=0
Решение а) Чтобы логирифм по основанию 5 существовал. Надо чтобы выражение под знаком логарифма было больше 0. ⇒ 3-2x-x^2 >0. Решаем это нер-во, и получаем ответ. 3-2x-x^2>0 x^2+2x-3<0 (x+3)(x-1)<0 по числовой оси, х∈(-3;1) ответ: x∈(-3;1) - заметьте, не включительно! б) Условие переписано не верно. Но как я понял, оно такое: log((3x+2)/(2x-1)) по основанию х+5. - если такой пример, то решение такое: Пишем ОДЗ. Основание должно быть больше 0 и не равно 1. ⇒ x+5>0; x+5≠1, из ОДЗ получаем, что x > -5 и x ≠ -4. Решаем выражение под знаком логарифма, оно как и в первом примере должно быть больше 0. (3x+2)/(2x-1)>0 x≠(1/2) из неравенства получаем, что x∈(-беск до 1/2)и(от1/2 до + беск.) СМОТРИМ на ОДЗ. совмещаем. Получаем, что х∈(-5 до -4) и (от -4 до 1/2) и (от 1/2 до + беск.) ответ: x∈(-5;-4)∨(-4;1/2)∨(1/2;+беск)
функция y=x²+x-9?
если да, то находим вершину графика функции по формуле m=-b/2a; m=-1/2=-0,5.
(-0,5;-9,25)- вершина параболы.
функция принимает отрицательные значения, то есть y<0, при x²+x-9>0.
решим неравенство: x²+x-9>0
x²+x-9=0
D=b²-4ac;
D=1+36=37≈6.08²
x₁,₂=(-1±6.08)/2;
x₁=-3.54; x₂=2.54.
Методом интервалов расскатляем знаки и мы получаем,
что y<0, при x∈(-3,54; 2,54). Но это всё примерные значения.
Если 0<x<4.
Просто подставим в функцию x=0 и x=4.
При x=0, y=-9; при x=4, y=11.
Так как неравенство у нас строгое, значит y∈(-9;11).