1)4x²+64=0 4x²=0-64 4x²=-64 x²=-64:4 x²=-16 x в квадрате может быть равно только положительному числу,так два минуса=плюс.Например -6²=36,а 4²=16.Отрицательные не получились,поэтому у уравнения нет решения ответ: нет решения 2)25x²-4=0 25x²=0+4 25x²=4 x²=4/25 x=2/5 или -2/5 25*2/5²-4=0 25(-2/5)²-4=0 ответ:x=2/5,x=-2/5 3)-7x²=0 x²=0:(-7) x²=0 x=0 -7*0²=0 ответ:x=0 4)9x²-1=-1 9x²-1+1=0 9x²-0=0 9x²=0-0 9x²=0 x²=0:9 x²=0 x=0 9*0²-1=-1 ответ:x=0 5)(6x+9)(3-x)=0 6x+9=0 или 3-x=0 6x=0-9 или x=3-0 6x=-9 или x=3 x=-9/6 или x=3 (6(-9/6)+9)(3-(-9/6))=0 (6*3+9)(3-3)=0 ответ:x=-9/6;x=3
3 книги засчитаем за одну, тогда число перестановок равно 28(P = 28!). Теперь возвращаемся к трём книгам, их можно переставлять между собой, т.е. количество перестановок равно факториалу трёх (P = 3!). В комбинаторике есть правило произведений, по которому количество перестановок равно факториалу 3 умноженное на факториалу 28(P = 28! · !3) P = 3!(количество перестановок трёхтомников) P = 28!(количество перестановок всех книг разных авторов, включая трёхтомников) P₂₈ · P₃ = 28! · !3(общее количество перестановок)
-5x+1>=3
-5x>=2
5x<=2
x<=0.4