ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8
1. а) у=х-1 к=1 l=-1
и) у= -0,5*х+2 k=-0.5 l=2
2. а) у=1 при х=0 следовательно у=1 точка пересечения с осью ординат
и) у=2 при х=0 следовательно у=2 точка пересечения с осью ординат
для построения прямых вычислим еще точка пересечения с осью обсцисс:
а) х=1 при у=0 и) х=4 при у=0
выполняем построение. рисуем оси, ставим направления и выбираем единичные отрезки:
| Y
|
|
|
|
| 2
|
| 1
|
0xx> X
| 1 4
|
теперь аккуратно соединим точку 1 на оси ОУ и точку 1 на оси ОХ - это прямая а). Также аккуратно соединим точку 2 на оси ОУ и точку 4 на оси ОХ - это прямая и)
Объяснение:
1) y'=
f'(-1)= -3-4=-7
2) y'=
f'(п/6)= 2
3) y'=
f'(1)=5+6=11