В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
(х-2)(х+3)/(х-4)>=0
x^2+3x-2x-6/x-4 >=0
x^2-x-6/x-4 >=0
x^2-x-6=0
d=1+24=25=5^2
x1=1+5/2=3
x2=1-5/2=-2
x^2-x-6=(x-3)(x+2)>=0
x принадлежит (-бесконечности: -3] в обьединении [2;+бесконечности)
х принадлежит (4:+бесконечности)
обьединяем
х принадлежит (4:+бесконечности)
х(х+1)(х-1)/(x+2)(х-2)>=0
(x^2+x)(x-1)/(x+2)(х-2)>=0
x^3-x^2+x^2-x/(x+2)(х-2)>=0
x(x^2-1)/(x+2)(х-2)>=0
x принадлежит (-бесконечности: -1] в обьединении [1:+бесконечности)
x принадлежит(-бесконечности: -2) в обьединении (2:+бесконечности)
обьединяем
х принадлежит(-2:-1] в обьединении [1;2)
квадратные скобки значат что значение включается в промежуток, круглые не включают