1)При выполнении четырех арифметических действий (кроме деления на нуль) над рациональными числами всегда получаются рациональные числа. 2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3) 1,057373... = 1,05(73) 3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль. 5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами. Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются иa + b и ab (замкнутость), (1) a + b = b + a, ab = ba (коммутативность), (2) a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность), (3) a * 1 = a (единица), (4) a(b + c) = ab + ac (дистрибутивность),(5); из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение). (6) 6) 7) Два числа, произведение которых равно 1, называются взаимно обратными. 8) 7-3 - числовое выражение, (8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл 3+:)(+)-+ не имеет смысла 9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением. 10)Если в числовом выражении появляются буквы - оно становится буквенным выражением у+5, у-переменная величина 11)да например а+а+(а+а) причём а = 4 12)нет, потому что в нем нет букв 4 нельзя 4х можно 13) Одночлен − это произведение чисел и степеней переменных с натуральными показателями.
Например: 13a^3 b^2; 13x^12 y^11; 2(a^4)^3 c^7 (−9)z^11 . 14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с. 15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 , b d 3 , – 17 a b c 16) Число 0 называется нулевым одночленом. 17)
Переобразуйте данное целое выражение в произведении многочленов: к)(x-y)*(4x-6y)+(x+1)*(18y-12x)=(x-y)*(4x-6y)-(x+1)*3(4x-6y)=2(2x-3y)(x-y-3x-3)=2(2x-3y)(-2x-y-3)=-2(2x-3y)(2x+y+3) c)2a(a+2)^2-3b(a+2)=(a+b)(2a(a+b)-3b)=(a+b)(2a^2+2ab-3b) Разложите выражение на множители, используя формулы сокращённого умножения: б)(a-b)^2-c^2=(a-b+c)(a-b-c) н)(a+b)^2-(x+y)^2=(a+b+x+y)(a+b-x-y) e) (m^2-4n)^2-(m^2-2n)^2=(m^2-4n+m^2-2n)(m^2-4n-m^2+2n)=2(m^2-3n)*(-2n)=-4n(m^2-3n) d)(x-2y)^2+4(x-2y)+4=(x-2y+2)^2 z)16m^2-8m(3-m)+(3-m)^2=(4m-3+m)^2=(5m-3)^2 Представьте целое выражение в виде произведения многочленов: д)ax-ya+x-y=x(a+1)-y(a+1)=(a+1)(x-y) о)a^3+5a^2+5a+25=a^2(a+5)+5(a+5)=(a+5)(a^2+5)