М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sark23
Sark23
30.03.2021 00:02 •  Геометрия

Найти абциссу центра описанной окружности треугольника вершины которого имеют координаты (-3; 4) (6; 4) (6; 8)

👇
Ответ:
vit7201
vit7201
30.03.2021
O(x,y) центр. (абсцисса = координата x)

R^{2} = (x+3)^{2} + (y-4)^{2} (1)

R^{2} = (x-6)^{2} + (y-4)^{2} (2)

R^{2} = (x-6)^{2} + (y-8)^{2} (3)

для каждой точки записали условие принадлежности окружности радиуса R с центром (x,y).

если из (1) вычтем (2) и раскроем скобки получим:

0 = (x+3)^{2} - (x-6)^{2} = x^{2} + 6x +9 - x^{2} +12x-36 = 18x-27

то есть x = \frac{3}{2} = 1.5
4,7(57 оценок)
Открыть все ответы
Ответ:
yourdream23
yourdream23
30.03.2021
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB.
Найдём угол BAC:
BAC = 180° - (30° + 105°) = 180° - 135° = 45°
По теореме синусов найдём сторону AC:
(BC)/(sinBAC) = (AC)/(sinABC);
(3√2)/(√2/2) = (AC)/(1/2);
AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см
По той же теореме синусов найдём сторону AB:
(AC)/(sinABC) = (AB)/(sinBCA);
sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191
(3)/(1/2) = (AB)/(1.6191);
AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см
ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
Решите треугольник abc, если угол ab =30°, угол c=105°, bc=3√2 см.
4,6(16 оценок)
Ответ:
HrenSGori
HrenSGori
30.03.2021

1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.

Радиус равен половине диагонали основания.

R = √(3² + 4²) = 5 см.

Тогда высота Н пирамиды равна:

Н = √(13² - 5²) = √(169 - 25) = 12 см.

2) Будем считать, что в задании имеется в виду, что  высота пирамиды проецируется на основание в вершину прямого угла.

Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.

Гипотенуза основания равна √(9² + 12²) = 15 см.

Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.

Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.

Теперь можно определить площади боковых граней.

Sбок = (1/2) *(6*8 + 12*8 + 15*(4/5)√181) = (72 + 6√181) см².

Площадь основания Sо = (1/2)(9*12) = 54 см².

Полная площади пирамиды равна 54 + 72 + 6√181 = 126 + 6√181 см².

Объём пирамиды равен (1/3)*54*8 = 144 см³.

4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ