1. x² - 6x + 9 = 0
D = 0
x = -b/2a = 6/2 = 3
Відповідь: в) 1
2. x² - 7x = -6
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ + x₂ = 6 + 1 = 7
Відповідь: а) 7
3. x² - 7x + 6 = 0
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ · x₂ = 6 · 1 = 6
Відповідь: г) 6
4. x² - 15x + 56 = 0
x² - 7x - 8x + 56 = 0
x(x - 7) - 8(x - 7) = 0
(x - 7)(x - 8) = 0
x - 7 = 0
x₁ = 7
x - 8 = 0
x₂ = 8
Відповідь: в) 7i 8
Пусть x число квартир в подъезде, а однозначный номер стоит s рублей. Поскольку в доме есть трёхзначные номера (они упомянуты) и нет четырёхзначных (они не упомянуты), то число 3x трёхзначно, поэтому x двузначно. Рассмотрим два случая:
1) Пусть число 2x двузначно. Тогда во втором подъезде все номера двузначны, поэтому собрано 2xs руб. В третьем подъезде (99 2x) двузначных номеров и 3x 99 трёхзначных, поэтому в нём собрано 2s(99 2x) + 3s(3x 99) руб. По условию 1,2 2sx = 2s(99 2x) + 3s(3x 99), откуда 2,4x = 5x 99 и x не целое.
2) Пусть число 2x трёхзначно. Тогда во втором подъезде (99 2x) двузначных и (3x 99) трёхзначных номеров, а в третьем x трёхзначных номеров, откуда 1,2(4x 99) = 3x, и x = 66. Проверка показывает, что 2x и 3x действительно трёхзначны.
ответ: 66 квартир.