Обозначим числа x1, x2, x3, x4, разность арифметической прогрессии -d (минус, потому что она убывающая), тогда x2=x1-d, x3=x1-2d.
Причём d > 0
Знаменатель геометрической прогрессии обозначим q.
x3=x1-2d=x2*q=(x1-d)*q
x4=x2*q^2=(x1-d)*q^2
x1+x4=x1+(x1-d)*q^2=7
x2+x3=x1-d+x1-2d=6
Из 4 уравнения
x1=(6+3d)/2=3+1,5d
x2=a1-d=3+0,5d
x3=a2-d=3-0,5d=(3+0,5d)*q
q=(3-0,5d)/(3+0,5d)
q^2=(3-0,5d)^2/(3+0.5d)^2
x1+x4=3+1,5d+(3+0,5d)(3-0,5d)^2/(3+0,5d)^2=7
3+1,5d+(3-0,5d)^2/(3+0,5d)=7
Умножаем на знаменатель.
(3+1,5d)(3+0,5d)+(3-0,5d)^2=7(3+0,5d)
9+4,5d+1,5d+0,75d^2+9-3d+0,25d^2=21+3,5d
18+3d+d^2-21-3,5d=0
d^2-0,5d-3=0
2d^2-d-6=0
D=1-4*2(-6)=49=7^2
d1=(1-7)/4=-6/4<0 -не подходит
d2=(1+7)/4=2>0 - подходит.
d=2; x1=3+1,5d=3+3=6;
x2=6-2=4; x3=4-2=2;
q=x3/x2=2/4=0,5; x4=2*0,5=1.
ответ: 6; 4; 2; 1
{x+yz=6
{y+zx=6
{z+xy=6
Из уравнения 1 выразим переменную х
{x-=-yz+6
{y+z(-yz+6)=6
{z+(-yz+6)y=6
Имеем теперь пока 2 системы
{-yz²+y+6z-6=0
{-y²z+6y+z-6=0
{(z-1)(-yz-y+6)=0 ⇒ z=1, также -yz-z+6=0
{-y²z+6y+z-6=0
Первый случай
{z=1
{-y²+6y-5=0
Решаем квадратное уравнение
y²-6y+5=0
По т. Виета
y1=1
y2=5
Имеем такие пары решений системы : (5;1;1) и (1;5;1)
Если
{-yz-y+6=0
{-y²z+6y+z-6=0
{-yz-y+6=0
{y=1
{-yz-z+6=0
{y=1
{z=5
{x=-yz+6=-1*5+6=1
Пара решений системы: (1;1;5)
Если
{-yz-y+6=0
{-yz-z+6=0
Выразим переменную у из уравнения 2
{y=6/(z+1)
ПОдставим и получаем упрощенное уравнение z²+z-6=0
По т. Виета
z1=-3
z2=2
Пары решения системы: (-3;-3;-3) и (2;2;2)
ОТвет: (5;1;1), (1;5;1), (1;1;5), (-3;-3;-3), (2;2;2).