в) Предположим, нам удалось вычеркнуть n сумм.
С одной стороны, сумма всех вычеркнутых чисел не меньше 1 + 2 + 3 + ... + 3n = 3n (3n + 1)/2; с другой стороны, сумма вычеркнутых чисел не больше 39 + 38 + 37 + ... + (40 - n) = n (79 - n) / 2. Поэтому n (79 - n) / 2 ≥ 3n (3n + 1)/2; 79 - n ≥ 9n + 3; n ≤ 7.
Покажем, что n = 7 возможно:
1 + 15 + 23 = 39
2 + 14 + 22 = 38
3 + 13 + 21 = 37
4 + 12 + 20 = 36
5 + 11 + 19 = 35
6 + 10 + 18 = 34
7 + 9 + 17 = 33
а) Например, первые 6 примеров выше
б) Нет, по доказанному
ответ. б) нет; в) 7
ответ:
более быстрый процессор выполнит работу за 55 мин, а более медленный – за 66 мин, что соответствует 1 ч 6 мин.
объяснение:
пусть время, нужное первому процессору на выполнение работы = х мин.
скорость процессора составит:
1 / х работ/мин.
время, необходимое второму процессору, чтобы исполнить работу:
х – 11 мин.
тогда скорость второго процессора составит:
1 / (х – 11) работ/мин.
при работе вместе скорость процессоров складывается, тогда:
(1 / х) + (1 / (х – 11)) = 1 / 30 работ/мин.
((х – 11) + х) / (х * (х – 11)) = 1/30;
30 * ((х – 11) + х) = х * (х – 11);
30 * х – 330 + 30 * х = х2 – 11 * х;
30 * х – 330 + 30 * х – х2 + 11 * х = 0;
71 * х – 330 – х2= 0;
уравнение к виду a * x2 + b *x + c = 0, где а = -1; b = 71; с = -330.
такое уравнение имеет 2 решения:
х1 = (- b - √‾(b2 – 4 * a * c)) / (2 * a) = (-71 – √‾((71)2 – 4 *330 )) / (- 2 * 1) = (-71 – √‾(5 041 – 1 320)) / -2 = (-71 – √‾3 721) / -2 = (-71 – 61) / -2 = - 132 / -2 = 66;
х2 = (- b + √‾(b2 – 4 * a * c)) / (2 * a) = (-71 + √‾((71)2 – 4 *330 )) / (- 2 * 1) = (-71 + √‾(5 041 – 1 320)) / -2 = (-71 + √‾3 721) / -2 = (-71 + 61) / -2 = - 10 / -2 = 5;
таким образом получили 2 решения.
х1 = 66;
х2 = 5;
проверим, выполняется ли при этих значениях первоначальное уравнение:
х1 = 66;
1/66 + 1/55 = (5 + 6) / (5 * 6 * 11) = 11 / (5 * 6 * 11) = 1/30.
х2 = 5;
1/5 + 1/(5 - 11) = 1/5 – 1/6 = 6/30 – 5/30 = 1/30.
уравнение и со вторым корнем выполняется, но скорость второго процессора в этом случае получается отрицательной: -1/6.
значит остается один корень:
х = 66 мин;
х – 11 = 66 – 11 = 55 мин.
Признак делимости на 4: две последние цифры должны образовать число, которое делится на 4.
Число: 261а6.
Двузначные числа, которые делятся на 4 и кончаются на 6:
16, 36, 56, 76, 96.
ответ: a ∈ {1, 3, 5, 7, 9}