М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DjDenZzz
DjDenZzz
07.07.2021 03:37 •  Алгебра

Исследуйте не чентость и на нечетность f (x)=x5 sin x2

👇
Ответ:
разетка1234
разетка1234
07.07.2021
Коряво написано....
f(-x)=-f(x)\\f(-x)=(-x)^5*sin((-x)^2)=-x^5sin(x^2)
ф-я нечетная
4,5(50 оценок)
Открыть все ответы
Ответ:
vinitskay74
vinitskay74
07.07.2021

Обозначим недостающее число через x.

а) Среднее арифметическое данного ряда = 24:

(3+8+15+30+x+24)/6 = 24;  80 + x = 24*6;

80 + х = 144

х = 144 - 80

х = 64

Пропущено число 64.

б) Размах ряда - это разность между наибольшим и наименьшим значениями ряда.

Если в ряду содержатся только положительные числа, то пропущено наибольшее число,  оно равно :

x-3 = 52;

x= 55.

Если в ряду могут быть отрицательные числа, то пропущено наименьшее число, оно равно 12:

64-x=52;

x = 64-52 = 12.

в) Мода ряда - это число, которое встречается наиболее часто. Так как мода = 8, то пропущено число 8.

Объяснение:

4,6(70 оценок)
Ответ:

Определение.

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо:

1) В формулу функции вместо y подставить x, вместо x — y:

x=f(y).

2) Из полученного равенства выразить y через x:

y=g(x).

Пример.

Найти функцию, обратную функции y=2x-6.

1) x=2y-6

2) -2y=-x-6

y=0,5x+3.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).

y=2x-6 и y=0,5x+3 — линейные функции. Графиком линейной функции является прямая.  Для построения прямой берём две точки.

  

  

Однозначно выразить y через x можно в том случае, когда уравнение  x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой).

Теорема (необходимое и достаточное  условие обратимости функции)

Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

Классический пример — функция y=x². На промежутке [0;∞) функция возрастает. Условие обратимости выполнено, следовательно, можем искать обратную функцию.

Так как область определения функции y=x² — промежуток [0;∞), область значений на этом промежутке — также [0;∞), то область определения и область значений обратной функции - также [0;∞).

1) x=y².

2)

  

Так как y≥0, то

  

то есть на промежутке [0;∞) y=√x - функция, обратная к функции y=x². Их графики симметричны относительно биссектрисы I и III координатных четвертей:

В алгебре наиболее известными примерами взаимно обратных функций являются показательная и логарифмическая функция, а также тригонометрические и обратные тригонометрические функции


4,7(25 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ