Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.
(x^3+4x^2-9x-36)/(x^3+2x^2-11x-12)
Разложим числитель на множители:
x^3+4x^2-9x-36= (x^3+4x^2)-(9x+36)=x^2(x+4)-9(x+4)=(x^2-9)(x+4)=(x-3)(x+3)(x+4)
Разложим знаменатель на множители:
x^3+2x^2-11x-12
Попробуем подобрать число, при подстановке которого наше выражение равно нулю. Первое такое число "-1". Разделим наш знаменатель на х+1:
x^3+2x^2-11x-12 | x+1
x^3 +x^2 x^2+x-12
x^2 -11x
x^2 + x
-12x-12
-12x-12
0
Мы получили квадратное уравнение х^2+x-12,
корнями которого будут числа "3" и "-4".
Итак, x^3+2x^2-11x-12=(х+1)(х-3)(х+4)
Наша дробь примет вид (x-3)(x+3)(x+4)/(х+1)(х-3)(х+4)=(х+3)/(х+1)
x<=3
x∈(-∞;3]