Решение: Обозначим: скорость первого пешехода : х км/час скорость второго пешехода : у км/час скорость сближения пешеходов (х+у) время в пути, если бы пешеходы вышли одновременно: 30/(х+у)=3 (1) на самом деле: первый пешеход половину пути 15км за время: 15/х час второй пешеход половину пути 15 км за время: 15/у час А так как один из них вышел позже на 1 час 15мин или 1,25 часа позже, то: 15/х-15/у=1,25 (2) Решим получившуюся систему уравнение: 30/(х+у)=3 15/х-15/у=1,25
х+у=10 15у-15х=1,25ху Из первого уравнения найдём значение (х) и подставим его значение во второе уравнение: х=10-у 15у-15*(10-у)=1,25*(10-у)*у 15у-150+15у=12,5у-1,25у² 1,25у²+17,5у-150=0 (сократим на 1,25) у²+14-120=0 у1,2=(-14+-D)/2*1 D=√(14²-4*1*-120)=√(196+480)=√676=26 у1,2=(-14+-26)/2 у1=(-14+26)/2 у1=6 (км/час - скорость второго пешехода) у2=(-14-26)/2 у2=-20 - не соответствует условию задачи 10-6=4 (км/час- скорость первого пешехода)
ответ: Скорость первого пешехода 4км/час; скорость второго пешехода 6 км/час
1 этап постановка задачи- найти стороны прямоугольника 2 этап составление математического описания изучаемого объекта - у нас геометрическая фигура четырехугольник , у которого все углы прямые и стороны попарно равны. Площадь прямоугольника ищется произведением его смежных сторон. 3 этап выбор метода решения уравнений математического описания и реализация его в форме моделирующей программы. Метод использован составления уравнения , зная части сторон прямоугольника 7 частей одна сторона, и 6 частей другая. Пусть х- это 1 часть, тогда 7х и 6х смежные стороны. Уравнение: 7х*6х=168 42х²=168 х²=168/42 х²=4 х=√4 х=2 7*2=14 одна сторона и 6*2=12 вторая сторона
а) Выносим общий множитель 3 за скобки.
В скобках
a³-27 - разность кубов
Формула
a³-b³=(a-b)(a²+ab+b²)
при
b=3
a³-3³=(a-3)(a²+3a+3²)=(a-3)(a²+3a+9)
в)
Применяем группировки:
(81x²-18x+y²) + (18x-2y)
81x²-18x+y²= (9x-y)²- по формуле квадрата разности
(a-b)²=a²-2ab+b²
применяем ее слева направо
a²-2ab+b²
a²=81x²⇒ a=9x
b²=y²⇒ b=y
2ab=2·9x·y=18xy
(9x-y)²=(9x-y)·(9x-y)
Поэтому
(9x-y)² +2(9х-у)= (9x-y)·(9x-y)+2(9х-у)=(9x-y) · ( 9x-y +2)
c)Применяем группировки и формулу квадрата разности
a²+b²-2ab= (a-b)²
(a-b)²=(a-b)·(a-b)
(a-b)²+2(a-b)+1=
Применяем формулу квадрата разности
a²+b²-2ab= (a-b)²
вместо а
(a-b)
вместо b
1
получаем:
((a-b)+1)²