![y= \sqrt{- x^{2} +x+6} \\ ODZ: \ - x^{2} +x+6 \geq 0 \\ x^{2} -x-6 \leq 0 \\ D=25=5^2 \\ x_1=3;x_2=-2 \\ x\in[-2;3] \\ y \geq 0](/tpl/images/0310/3355/b462d.png)

7. РЕШЕНИЕ: Всего существует 90 двузначных чисел. Тогда в испытании "выбор наугад двузначного числа" существует 90 равновозможных вариантов. Среди двузначных чисел есть 7 (13, 26, 39, 52, 65, 78, 91) чисел, делящихся нацело на 13. Следовательно, к наступлению события а - "выбранное наугад двузначное число делится нацело на 13" - приводят 7 благоприятных результатов. Тогда Р(А) =7/90≈0,078
8. Всего вариантов - 40. Благоприятных результатов - 27 (т.к. от 1 до 40 существует 13 чисел, в которых есть цифра "3" => 40-13=27) P=27/40=0,0675
9. 1) Всего вариантов - 24. Благоприятных результатов - 4 (6, 12, 18, 24). P=4/24≈0,017.
2) Всего вариантов - 24. Благоприятных результатов - 13 (т.к. от 1 до 24 содержится 11 чисел, кратных 3 и 5 => 24-11=13). P=13/24≈0,542