М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
урсвт
урсвт
15.02.2023 02:33 •  Алгебра

Решить : a+b/a²-4b+4a-b² × 16-b²-a²-2ab/a²+ab = ?

👇
Ответ:
lerka22222222222222
lerka22222222222222
15.02.2023
Буду писать по частям: знаменатель первой дроби = a^2-b^2+4a-4b=(a-b)(a+b)+4(a-b)=(a-b)(a+b+4) Теперь числитель второй дроби ,минус выносим перед дробью, меняем знаки = a^2+2ab+b^2-16=(a+b)^2-4^2=(a+b-4)(a+b+4). Получаем a+b/(a-b)(a+b+4) x [-(a+b-4)(a+b+4)]/a(a+b) =( сокращаем a+b ; a+b+4)=-(a+b-4)/a(a-b)
4,8(52 оценок)
Открыть все ответы
Ответ:
Blackbberyy
Blackbberyy
15.02.2023

Объяснение:

\left \{ {{x^3-y^3=-7} \atop {3xy^2-3x^2y=5\sqrt{2} }} \right.

сложим эти два уравнения и преобразуем по формуле куба разности:

x^3-y^3+3xy^2-3x^2y =5\sqrt{2}-7 \right.\\x^3-3x^2y +3xy^2-y^3=5\sqrt{2}-7 \right.\\(x-y)^3=5\sqrt{2}-7\\

Для простоты вычислений введём константу С

C=\sqrt[3]{5\sqrt{2}-7 }

C≈0,4142

Из последнего выражения имеем следующие тождества

x-y=C\\x = y+C

Подставляем x в первое уравнение

(y+C)^3-y^3=-7\\y^3+3y^2C+3yC^2+C^3-y^3=-7\\3y^2C+3yC^2+C^3+7=0

В последнее С³ подставим его значение, чтобы сократить семёрку.

3y^2C+3yC^2+5\sqrt{2}-7 +7=0\\3y^2C+3yC^2+5\sqrt{2}=0

Теперь решаем обычное квадратное уравнение

y_{12} =\frac{-3C^2\pm\sqrt{(3C^2)^2-4*2C*5\sqrt{2} } }{2*3*C} \\y_{12} =\frac{-3C^2\pm\sqrt{9C^4-40C\sqrt{2} } }{6C}

Тут получается что дискриминант отрицательный и корней нет.

Вариант второй, графический

из первого уравнения получаем график функции

y=\sqrt[3]{x^{3} +7} \\

А из второго

3xy^2-3x^2y=5\sqrt{2} \\3xy^2-3x^2y-5\sqrt{2} =0\\y_{12} =\frac{3x^3\pm\sqrt{9x^4+60x\sqrt{2} } }{6x}

Строим графики.

Видим, что точек пересечения нет.

Графики стремятся приблизится друг к другу, но не пересекаются


С подробным пошаговым решением. Решить систему уравнений
С подробным пошаговым решением. Решить систему уравнений
С подробным пошаговым решением. Решить систему уравнений
4,8(16 оценок)
Ответ:
Liz0997
Liz0997
15.02.2023

Наибольшая прибыль = 7 денежных единиц

Объяснение:

Пусть x - количество произведенной продукции П1, а y - количество произведенной продукции П2. Тогда цель задачи максимизировать значение (1 \cdot x + 2 \cdot y) при условии ограничений на сырье и того, что нам надо произвести хоть что-то: 1 \cdot x + 3 \cdot y \leq 9, 2 \cdot x + 1 \cdot y \leq 8, x\geq 0, y\geq 0.

Эти четыре неравенства задают заштрихованный под прямыми y = 3 - \frac{x}{3}, y=8-2x четырехугольник в первом квадранте.

Значение максимизируемого выражения x+2y есть линии уровня z=x+2y, а так как градиент функции z(x,y) равный grad z = {1;2} направлен в сторону первого квадранта, то значения z будут тем больше, чем дальше мы продвинем линию уровня в первый квадрант. С учетом ограничений наибольшее значение изготовленной продукции придется на пересечение прямых, которые задают четырехугольник: y = 3 - \frac{x}{3}, y=8-2x. Точка пересечения (3;2). Значит, наибольшая прибыль, которую можно получить 3+2*2=7.

4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ