Объяснение:
Координатную прямую очень легко построить, если Вы хорошо усвоили принцип изображения координатного луча, о котором мы говорили в предыдущем пункте. Сделаем это.
Пусть перед нами находится координатный луч OX. Придадим ему положительное направление, указав его стрелочкой.
Теперь проведем луч с началом в точке O, дополняющий луч OX до прямой.
На этом луче отметим штрихи, откладывая друг за другом единичные отрезки справа налево, начиная с точки O.
После того как над штрихами справа налево от точки O мы запишем числа -1, -2, -3, …, координатная прямая примет законченный вид.
На практике чаще используется координатная прямая, на которой отмечено лишь начало отсчета и единичный отрезок, то есть, координатная прямая одного из следующих видов.
Итак, координатная прямая – это прямая, на которой выбрано начало отсчета, указан единичный отрезок и задано направление.
Взаимно однозначное соответствие между точками координатной прямой и действительными числами
ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)
v1t=3v1(t-1.5);
t=3t-4.5;
t=2.25;
v1=s/t=9/2.25=4км/ч.
ответ: v1=4км/ч.
Если непонятно, спрашивайте.