1.Весь обьем работы принимаем за 1. 2. Х - это время за которое всю работу сам выполнит 1 слесарь 3. Y - это время за которое всю работу сам выполнит 2 слесарь
Так как второй на 1 час=60 минут дольше, то первое уравнение системы
y - x = 60
Составляем второе уравнение:
1. Так как вся работа - это 1, то 1 слесарь за 1 минуту выполняет 1/x часть работы а второй за 1 минуту - 1/y часть работы
2. Работают вместе
1 слесарь 45 минут - значит всего выполнил работы - 1/x × 45
2 слесарь 45 минут и еще 2 часа 15 минут Итого работает 3 часа= 180 минут
Значит выполнил 1/y × 180 часть работы
вся работа - 1
уравнение получается:
1/x×45 + 1/y × 180 = 1 Решаем систему
Вышлю фото при необходимо сти.
При решении системы получается квадратное уравнение x^2 - 165x - 2700=0 x = 180
Тогда y = 180+60= 240
ответ: 1 слесарь = за 3 часа, 2 слесарь - за 4 часа
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
{-1=-6+b
{-1=3a-b
b=5
-1=3a-5
3a=4
a=4/3
ответ: при a=4/3 и b=5