Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором 10- наименьшее двузначное число 10:4=2(ост 2) 11:4=2(ост 3) 11 - первый член прогрессии (либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство так как при делении на 4 остаток 3 общая форма 4k+3 4k+3>=10 4k>=10-3 4k>=7 4k>=7:4 k>=1.275 наименьшее натуральное k=2 при k=2: 4k+3=4*2+3=11 11 -первый член )
далее разность прогрессии равна числу на которое делим т.е. в данном случае 4
далее ищем последний член прогрессии 99- наибольшее двузначное 99:4=24(ост3) значит 99 - последний член прогрессии (либо с оценки неравенством 4l+3<=99 4l<=99-3 4l<=96 l<=96:4 l<=24 24 - Наибольшее натуральное удовлетворяющее неравенство при l=24 : 4l+3=4*24+3=99 99- последний член прогрессии ) далее определяем по формуле количество членов и находим сумму по формуле ответ: 1265
Для того, чтобы билет был интересным, нужно, чтобы в его номере присутствовали числа 05, 16, 27, 38, 49, 50, 61, 72, 83, 94 Всего 10 пар. Пусть ab - одно из этих чисел. Тогда номер интересного билета может выглядеть так: ab** *ab* **ab где вместо звёздочек стоят цифры от 0 до 9. То есть для каждой пары чисел есть 3 возможных варианта расположения в номере билета, причём при каждом варианте расположения будет 100 различных номеров билетов. Таким образом, всего интересных билетов будет 10*3*100 = 3000 штук. Тогда вероятность вытянуть такой билет составит
3(2+2у)-y^2-11=0;
х=2+2у,
6+6y-y^2-11=0
y^2-6y+5=0
y1=1. y2=6
x1=3, x2=14