Пароход,двигаясь против течения со скростью 14 км/ч ,проходит расстояние между двумя пристанями за 4 часа. за какое вермя он пройдёт то же расстояние по течению ,если его скорость в этом случае равна 5,6 м/c
Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
Х- скорость пешехода из А у- Скорость пешехода из В , из условия задачи имеем : (х + у ) -столько проходят оба пешехода за 1 час 27/(х+ у) = 3 27 = 3(х+ у) 9 = х + у х = 9 - у 27/у - 27/х = 1 21/60 27/у - 27/х = 81/60 1/у - 1/х =3/60 1/у -1/х = 1/20 , умножим на 20ху , получим 20х -20у = ху , полученное значение х из первого уравнения подставим во второе уравнение : 20(9 - у) -20у = (9 - у) * у 180 -20у -20у = 9у - у^2 y^2 -49y +180 =0 , найдем дискриминант уравнения = 49*49 - 4*1*180 = 2401- 720 = 1681 .Найдем корень квадратный из дискриминанта . Он равен =41 . Найдем корни уравнения : 1-ый = (-(-49)+41)/2*1 = 90/2 = 45 2-ой = (-(-49)-41) /2*1 = 8/2= 4 . Первый корень не подходит : слишком большая скорость для пешехода . Значит скорость пешехода из В ровна = 4км/ч .Из первого уравнения найдем скорость пешехода из А,она равна= х= 9 -у = 9-4 = 5 км/ч
1) 14*4=56 км -расстояние между пристанями
2) 56:5.6 =10 часов - за такое время пароход преодолеет расстояние между пристанями
ответ: за 10 часов
(примечание. но єто странно что скорость по течению больше скорости против течения )