Трехзначное число делится на 9 без остатка. когда это число поделили на 9, в частном получилось новое число, у которого сумма цифр на 9 меньше, чем сумма цифр исходного числа. сколько трехзначных чисел этим свойством?
Заметим, что наибольшая сумма цифр трехзначного числа равна 9+9+9=27 Таким образом для данных чисел сумма цифр нового числа равна либо 18 либо 9. Причем 18 будет только у числа 999. Тк это число с наибольшей суммой цифр. То есть cумма цифр нового числа в каждом из остальных чисел обладающим таким свойством равна. 9 Возможны варианты новых чисел : (Учитывая что все варианты не более 111 и не менее 12. Тк далее после умножения на 9 будут 4 значные числа. или 2 значные) То варианты новых чисел: 108,90,81,72,63,54,45,36,27,18 Число 999 не подходит. Тк cумма цифр нового числа 111 равна 3. Чтобы получить все варианты таких чисел умножим каждый из искомых новых чисел на 9. Исключая варианты где сумма цифр не оказалась равна 18 . 972,729,648,567,486-все данные числа ответ: 972,729,648,567,486
1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
То варианты новых чисел:
108,90,81,72,63,54,45,36,27,18
Число 999 не подходит. Тк cумма цифр нового числа 111 равна 3.
Чтобы получить все варианты таких чисел умножим каждый из искомых новых чисел на 9. Исключая варианты где сумма цифр не оказалась равна 18 .
972,729,648,567,486-все данные числа
ответ: 972,729,648,567,486