М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shtondin2017
shtondin2017
03.01.2021 22:44 •  Алгебра

Найдите корни уравнения: 1) 5y-y² : 2 = y²+ 3y : 5 p.s.: это

👇
Ответ:
людмила235
людмила235
03.01.2021
5y-   y²    = y²+  3y
      2                5

10y-y²   =   5y²+3y
    2               5

2(5y²+3y)=5(10y-y²)
10y²+6y=50y-5y²
10y²+6y-50y+5y²=0
15y²-44y=0
y(15y-44)=0
y=0                           15y-44=0
                                15y=44
                                 y=44/15
       
                                 y=    2  14
                                            15
4,7(44 оценок)
Открыть все ответы
Ответ:
ученый2222
ученый2222
03.01.2021
Чтобы квадратное уравнение имело корни, необходимо, чтобы дискриминант был больше нуля( 2 корня) или равен нулю ( 1 корень).
(a - 3)*x^2 - 2(3a - 4)*x + 7a - 6 = 0;
Слегка преобразуем уравнение:
(a-3)*x^2 + (8-6a)*x + (7a - 6) =0;
Тогда коэффициенты для нахождения дискриминанта будут такие:
a  = a - 3;   b = 8 - 6a ;   c = 7a - 6;
 D = b^2 - 4ac = (8-6a)^2 - 4*(a-3)(7a - 6)=
=64 - 96a + 36 a^2 - 4(7a^2 - 21a - 6a + 18) =
= 36a^2 - 96 a + 64 - 28a^2 + 108 a - 72 = 
=8a^ + 12 a - 8 .
D ≥ 0;  следовательно   8a^2 + 12a - 8 ≥ 0; сократим на 2 и получим:
4a^2 + 6a - 4 ≥ 0;
D = 36 + 64 = 100= 10^2;
a1 = (-6 + 10) /8 = 1/2;
a2 = (-6-10)/ 8 = - 2. Разложим выражение на множители:
4(a - 1/2)(a +2) ≥ 0;Используем метод интервалов ( точки закрашены, так как в условии не сказано, что 2 корня, а просто, что есть корни., то есть может 2 , а может и 1 корень)

                 +                  -                           +
(-2)(1/2) a
a ∈ ( - бесконечность; -2] U [1/2; + бесконечность)
4,4(4 оценок)
Ответ:
ппчуп
ппчуп
03.01.2021

1)

\frac{a}{a-sin^22x}=3

a=3(a-sin^22x)

sin^22x=2a

sin2x=\sqrt{2a}

Так как значения синуса не могут быть большими единицы, получаем:

-1<\sqrt{2a}<1

Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:

0<\sqrt{2a}<1

Откуда получаем:

2a0

a0

2a<1

a<\frac{1}{2}

Объединяя полученные результаты получаем: a∈(0;\frac{1}{2})

ответ: a∈(0;\frac{1}{2})

2)

sinx-cos2x=a^2+2

sinx-(1-2sin^2x)=a^2+2

2sin^2x-sinx-1-a^2-2=0

sinx=t

Получаем квадратное уравнение относительно t:

2t^2-t-1-a^2-2=0

D=1+4*2*(1+a^2-2)=1+8(a^2-1)=8a^2-7

t=\frac{1+\sqrt{8a^2-7}}{2}

t=\frac{1-\sqrt{8a^2-7}}{2}

Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:

8a^2-7=0

a^2=\frac{7}{8}

a=\sqrt{\frac{7}{8}}

a=-\sqrt{\frac{7}{8}}

Но так как нам нужно только одно решение в заданном промежутке получаем:

sinx=\frac{1+\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1+\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1+\sqrt{8a^2-7}}{2})<6\pi

1+\sqrt{8a^2-7}0

неравенство не имеет решений

sinx=\frac{1-\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1-\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1-\sqrt{8a^2-7}}{2})<6\pi

1-\sqrt{8a^2-7}0

8a^2-7<1

a^2<1

(a-1)(a+1)<0

Получаем, что при a∈(-1;1) данное уравнение имеет лишь один корень

ответ: a∈(-1;1)

 

4,5(72 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ