Объяснение:
1я бригада 300 дет/час
2я бригада 300 -х дет/час
3я бригада 300 +4х дет/час
время выполнения работы
t=((1/4)/(300+300-x)) + ((3/4)/(300+300-x+300+4x))=
=(1/4)[900+3x+3(600-x)]/((600-x)(900+3x))=
=(2700/4)[1/(-3x²+900x+540000)]
t будет иметь минимальное значение при максимальном значении выражения -3x²+900x+540000
по свойству квадратичной функции так как коэффициент при х² меньше 0 то ветки параболы направлены вниз и максимум квадратичной функции будет в вершине
х=-b/2a=900/6=150 деталей в час
Пусть скорость горной реки х
Плот плывет по реке 21 км в течение 21:х часов
Туристы на лодке все расстояние проплыли за такое же время:
54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х
Составим и решим уравнение:
54:(12+х) +0,5 =21:х
Умножим обе части на х(12+х), чтобы избавиться от дробей:
54х +0,5х(12+х) =21(12+х)
54х +6х +0,5х² =252+21х
0,5х²+39х -252=0
D=b²-4ac=39²-4·0.5·-252=2025
Так как дискриминант больше нуля, то уравнение имеет два корня
Один отрицательный и не подходит ( -84)
Второй = 6
Скорость течения горной реки 6 км/ч
2x+3>10-5x
7x>7
x>1
3x-4 <=2х+5
3x-2x<=9
x<=9
нанесем интервалы
___1(выкол.)_/__/_/__/__/__/9(закраш.)_/_/_/
\ \ \ \ \ \\ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \\
ответ (1;+9]