Линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.Свойства линейной функции:1) Область определения линейной функции есть вся вещественная ось;2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось. Если k = 0, то область значений линейной функции состоит из числа b;3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.a) b ≠ 0, k = 0, следовательно, y = b – четная;b) b = 0, k ≠ 0, следовательно y = kx – нечетная;c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.4) Свойством периодичности линейная функция не обладает;5) Точки пересечения с осями координат:Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.Oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.Замечание.Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х .6) Промежутки знакопостоянства зависят от коэффициента k.a) k > 0; kx + b > 0, kx > -b, x > -b/k.y = kx + b – положительна при x из (-b/k; +∞),y = kx + b – отрицательна при x из (-∞; -b/k).b) k < 0; kx + b < 0, kx < -b, x < -b/k.y = kx + b – положительна при x из (-∞; -b/k),y = kx + b – отрицательна при x из (-b/k; +∞).c) k = 0, b > 0; y = kx + b положительна на всей области определения,k = 0, b < 0; y = kx + b отрицательна на всей области определения.7) Промежутки монотонности линейной функции зависят от коэффициента k.k > 0, следовательно y = kx + b возрастает на всей области определения,k < 0, следовательно y = kx + b убывает на всей области определения.8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b. Ниже приведена таблица, которая наглядно это иллюстрирует рисунок 1.(Рис.1)Пример.Рассмотрим следующую линейную функцию: y = 5x – 3.1) D(y) = R;2) E(y) = R;3) Функция общего вида;4) Непериодическая;5) Точки пересечения с осями координат:Ox: 5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.Oy: y = -3, следовательно (0; -3) – точка пересечения с осью ординат;6) y = 5x – 3 – положительна при x из (3/5; +∞),y = 5x – 3 – отрицательна при x из (-∞; 3/5);7) y = 5x – 3 возрастает на всей области определения;8)
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
а) d^2=a^2+b^2+c^2
б)
А в) я не знаю