можно решить двумя смотря в каком ты классе ну ты поймешь какой тебе вариант подойдет
Первый учитель проверяет 360:15=24 тетради в час, второй 360:10=36 тетрадей, третий 360:6=60 тетрадей, вместе будет 360:(24+36+60)=3часа
2 вариант решения:
1 учитель делает всю работу за 15 часов, а за один час он сделает 1/15 часть работы, второй сделает за один час 1/10 часть, а третий 1/6 часть. Тогда втроём за один час они сделают 1/15 + 1/10 + 1/6 = 2/30 + 3/30 + 5/30 = 10/30= 1/3 часть. Тогда всю работу они сделают за 1 : 1/3 = 1 * 3 = 3 часа ответ 3 ч потребуется на проверку всех тетрадей
Сторона квадрата АВ = 8 см, ВР = ВЕ = 3 см. Поскольку КРЕМ - трапеция, то КМ параллельно РЕ, поэтому DK = DM = x.
Длина одного основания РЕ = 3*корень(2), длина другого КМ = х*корень 2, меняется от 8*корень 2 до 0.
Диагональ квадрата АС = BD = 8*корень(2).
Точки К и М в одном крайнем положении совпадают с А и С, в другом - обе совпадают с D, тогда трапеция вырождается в треугольник. Два крайних положения показаны на
Длина BN = PN = EN = 3*корень(2)/2. Длина DF = KF = MF = x*корень(2)/2. Длина OB = BD/2 = 4*корень(2)
Высота трапеции FN = BD - BN - DF = 8*корень(2) - 3*корень(2)/2 - x*корень(2)/2.
Площадь трапеции
S = (PE + KM) * FN / 2 = (3*корень(2) + х*корень(2)) * (8*корень(2) - 3*корень(2)/2 - x*корень(2)/2) / 2
S = корень(2) * (3 + x) * корень(2) * (8 - 3/2 - x/2) / 2 = (3 + x)(16 - 3 - x)/2 = (3 + x)(13 - x)/2 -> max
Неожиданно простая функция получилась. Дальше находим производную, и приравниваем к 0.
S ' = [ (13 - x) - (3 + x) ] / 2 = (10 - 2x) / 2 = 5 - x = 0
x = 5
ответ: точки К и М должны быть на расстоянии 5 см от точки D.
6*x*log(x + 5)*arctg(x)^2/(x^2 + 1) + 2*x*arctg(x)^3/(x + 5) +
+ 2*log(x + 5)*arctg(x)^3