а) х=3 1/3, у=4
б) х= -2, у=3
Объяснение:
а) Выразим в первом уравнении у:
у=14-3х.
Заменим у на полученное выражение во втором уравнении:
-3х+5(14-3х)=10
-3х+70-15х=10
-18х+70=10
-18х=-60
х=-60/(-18)=3 1/3
Найдем у при первого уравнения:
у=14-3*(3 1/3)=14-10=4
ответ: х=3 1/3, у=4
б) Перенесем правую часть второго уравнения влево.
3х-2у+3у+3=0
3х+у+3=0
3х+у=-3
Выразим у:
у=-3-3х
Подставим полученное выражение в первое уравнение:
6(х-3-3х)=5-(2х-3-3х)
6(-2х-3)=5-(-х-3)
-12х-18=5-х+2=8-х
Перенесем все в левую часть уравнения:
-12х-18-8+х=0
-13х-26=0
х=26/(-13)=-2
Найдем у:
у=-3-3*(-2)=-3+6=3
ответ: х=-2, у=3
В решении.
Объяснение:
Два рабочих, работая вместе, могут выполнить некоторую работу за 8 дней. Первый рабочий может выполнить эту работу вдвое быстрее, чем второй. За сколько дней каждый рабочий может выполнить эту работу самостоятельно?
1 - вся работа.
1/х - производительность 1-го рабочего (кол-во работы в день).
1/2х - производительность 2-го рабочего (кол-во работы в день).
По условию задачи уравнение:
(1/х + 1/2х) * 8 = 1
8/х + 8/2х = 1
Умножить уравнение на 2х, чтобы избавиться от дробного выражения:
8*2 + 8 = 2х
2х = 24
х = 12;
1/12 - производительность 1-го рабочего (кол-во работы в день).
1/24 - производительность 2-го рабочего (кол-во работы в день).
Найти, за сколько дней каждый рабочий может выполнить эту работу самостоятельно:
1 : 1/12 = 12 (дней) - первый рабочий.
1 : 1/24 = 24 (дня) - второй рабочий.
x² + 8x + 16 = 3x + 40
x² + 5x - 24 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 5² - 4·1·(-24) = 25 + 96 = 121
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-5 - √121) / 2*1 = -8
x2 = (-5 + √121) / 2*1 = 3
(2x - 3)² = 11x - 19
4x² - 12x + 9 = 11x -19
4x² - 23x + 28 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-23)² - 4·4·28 = 529 - 448 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (23 - √81) / 2*4 = 14/8 = 1.75
x2 = (23 + √81) / 2*4 = 4
(x+1)² = 7918 - 2x
x² + 2x + 1 = 7918 - 2x
x² + 4x - 7917 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 4² - 4·1·(-7917) = 16 + 31668 = 31684
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-4 - √31684) / 2*1 = -91
x2 = (-4 + √31684) / 2*1 = 87
(x+2)² = 3131 - 2x
x² + 4x + 4 = 3131 - 2x
x² + 6x - 3127 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 6² - 4·1·(-3127) = 36 + 12508 = 12544
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-6 - √12544) / 2*1 = -59
x2 = (-6 + √12544) / 2*1 = 53