М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
azia2995
azia2995
04.02.2022 03:32 •  Алгебра

Решите систему уравнений методом подстановок 4x-y=-7 x+3y=-5

👇
Ответ:
AngelinaMon
AngelinaMon
04.02.2022
4(-5-3у) - у=-7
х=-5-3у

-20-12у - у=-7
-12у-у=20-7
-13у=-13
у=1
следовательно х=-5-3*1=-8
ответ: х=-8 у=1
4,6(44 оценок)
Открыть все ответы
Ответ:
povarnicyna106
povarnicyna106
04.02.2022

Верные:

2,3,5

1)5х²+3х+4=0

D=3²-4*(5)*(4)

D=9-80=-71

-71<0 Корней нет

ответ: корней нет

2)1х²-3х+0=0

D=-3²-4*(1)*(0)

D=9+0=9

9>0 Два корня

х₁=3+3/2*(1)=3

х₂=3-3/2*(1)=0

ответ: х₁=3, х₂=0

3)-1х²+4х+3=0

D=4²-4*(-1)*(3)

D=16+12=28

28>0 Два корня

х₁=-4+5.292/2*(-1)=-0.646

х₂=-4-5.292/2*(-1)=4.646

ответ: х₁=-0.646, х₂=4.646

4)6х²+0х+5=0

D=0²-4*(6)*(5)

D=0-120=-120

-120<0 Корней нет

ответ: корней нет

5)7х²+7х-2=0

D=7²-4*(7)*(-2)

D=49+56=105

105>0 Два корня

х₁=-7+10.247/2*(7)=0.232

х₂=-7-10.247/2*(7)=-1.232

ответ: х₁=0.232, х₂=-1.232

6)0х²+5х-2=0

D=5²-4*(0)*(-2)

D=25+0=25

25>0 Два корня

х₁=-5+5/2*(0)=0

х₂=-5-5/2*(0)=нет(на 0 делить нельзя)

ответ: х₁=0, х₂=нет

4,6(86 оценок)
Ответ:
yliya302
yliya302
04.02.2022
Методы решения тригонометрических уравнений . Решение тригонометрического уравнения состоит из двух этапов : преобразование уравнения для получения его простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения . Существует семь основных методов решения тригонометрических уравнений . 1. Алгебраический метод. Этот метод нам хорошо известен из алгебры ( метод замены переменной и подстановки ). 2. Разложение на множители. Этот метод рассмотрим на примерах . П р и м е р 1. Решить уравнение: sin x + cos x = 1 . Р е ш е н и е . Перенесём все члены уравнения влево : sin x + cos x – 1 = 0 , преобразуем и разложим на множители выражение в левой части уравнения : П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1. Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 , sin x · cos x – sin 2 x = 0 , sin x · ( cos x – sin x ) = 0 , П р и м е р 3. Решить уравнение: cos 2x – cos 8x + cos 6x = 1. Р е ш е н и е . cos 2x + cos 6x = 1 + cos 8x , 2 cos 4x cos 2x = 2 cos ² 4x , cos 4x · ( cos 2x – cos 4x ) = 0 , cos 4x · 2 sin 3x · sin x = 0 , 1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 , 3. Приведение к однородному уравнению . Уравнение называется однородным относительно sin и cos, если все его члены одной и той же степени относительно sin и cos одного и того же угла. Чтобы решить однородное уравнение , надо: а) перенести все его члены в левую часть ; б) вынести все общие множители за скобки ; в) приравнять все множители и скобки нулю ; г) скобки, приравненные нулю , дают однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени; д) решить полученное алгебраическое уравнение относительно tan . П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2. Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x , sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 , корни этого уравнения : y1 = -1, y2 = -3, отсюда 1) tan x = –1, 2) tan x = –3, 4. Переход к половинному углу . Рассмотрим этот метод на примере : П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7. Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) = = 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) , 2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 , tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 , .5. Введение вс угла . Рассмотрим уравнение вида: a sin x + b cos x = c , где a, b, c – коэффициенты; x – неизвестное. Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь - так называемый вс угол ), и наше уравнение принимает вид: 6. Преобразование произведения в сумму . Здесь используются соответствующие формулы. П р и м е р . Решить уравнение: 2 sin x · sin 3x = cos 4x. Р е ш е н и е . Преобразуем левую часть в сумму : cos 4x – cos 8x = cos 4x , cos 8x = 0 , 8x = p / 2 + pk , x = p / 16 + pk / 8 . 7. Универсальная подстановка. Рассмотрим этот метод на примере . П р и м е р . Решить уравнение: 3 sin x – 4 cos x = 3 . Таким образом, решение даёт только первый случай.
4,8(87 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ