ответ:1) Задание
Дана функция
найти промежутки возрастания и убывания
По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+-+__
0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1]
в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Уравнение касательной имеет вид
найдем производную данной функции
найдем значение функции и производной в точке х=1
подставим значения в уравнение касательной
Объяснение:
Пусть х и у - скорости туристов.
Из условия встречи через час получим первое уравнение системы:
х*1 + у*1 = 50
х+у = 50 (1)
Из второй части условия напишем второе уравнение системы для времен прибытия: (учтем, что 50 мин = 5/6 часа)
(2)
(1) и (2) представляют собой систему двух уравнений с 2-мя неизвестными х и у. Выразим из (1) у через х:
у = 50 - х.
Подставим в (2) и получим уравнение для х:
Корни данного уравнения по теореме Виета: -100 - не подходит по смыслу.
И 30 - подходит.
х = 30, тогда скорость второго: 50-30 = 20.
ответ: 30 км/ч; 20 км/ч.