1) Обозначим через х количество книг на 1 полке, а через у - количество книг на 2 полке.
2) Так как на 2 полках первоначально было 70 книг, то можем составить первое уравнение: х + у = 70
3) Когда с 1 полки забрали 25% книг, то на ней осталось (100 - 25) = 75% книг от первоначального или 0,75х и в тоже время на 14 книг больше чем на второй полке, на основании этого можно составить второе уравнение: 0,75х = у + 14.
4) Таким образом получаем 2 уравнения с двумя неизвестными. Из первого уравнения выражаем у через х, получаем: у = 70 - х и подставляем во второе уравнение:
0,75х = 70 - х + 14
1,75х = 84
х = 48
у = 70 - х = 70 - 48 = 22
ответ: На 1 полке было 48 книг, на второй - 22 книги.
Сумма цифр трехзначного числа не больше 27.
Значит наибольшее число, которое может быть в 11 раз больше - 297.
Но сумма цифр таких чисел меньше, чем у 299 = 20.
Значит возможное число меньше 220.
Трехзначных чисел, делящихся на 11 и меньше 220 немного:
110, 121, 132, 143, 154, 165, 176, 187, 198, 209.
Сумму их цифр:
2, 4, 6, 8, 10, 12, 14, 16, 18, 11.
Видим, что требуемое равенство не выполняется.
Перебор можно еще уменьшить.