Возведение в квадрат есть формула:(a+b)2=a2+2ab+b
1)(x+5)^2=x^2+2x*5+5^2=x^2+10x+25
2)(3y-x)^2=(3y)^2-2*3yx+x^2=9y^2-6xy+x^2
Преобразование многочлена есть тоже формула:(a-b)(a+b)=a^2-b^2
А)(a-3)(a+3)=a^2-3^2=a^2-9
Б)(2y+5)(2y-5)=(2y)^2-5^2=4y^2-25
Разложение на множители тоже по формуле:a^2-b^2=(a-b)(a+b)
1)x^2-81=x^2-9^2=(x-9)(x+9)
2)49-y^2=7^2-y^2=(7-y)(7+y)
ответ: ( (7+√17) / 2; (7-√17)/2 ); ( (7-√17) / 2; (7+√17)/2 ).
Объяснение:
ху-х=4,
2х+у=7;
Из второго уравнения выразим у через х.
у=7-2х;
Подставим значение у в первое уравнение.
х(7-2х)=4; 7х-2х²=4; -2х²+7х-4=0; 2х²-7х+4=0;
D=49-4*2*4=49-32=17;
х₁₂=(7±√17) / 2;
х₁=(7+√17) / 2; х₂=(7-√17) / 2.
Подставим значения х в выражение у:
у₁=7 - (7+√17) / 2= 14/2 - (7+√17) / 2=(14-7-√17) / 2=(7-√17)/2;
у₂=7-(7-√17) / 2= 14/2 - (7-√17) / 2=(14-7+√17) / 2=(7+√17)/2.
ответ:( (7+√17) / 2; (7-√17)/2 ); ( (7-√17) / 2; (7+√17)/2 ).
В решении.
Объяснение:
Решить квадратные уравнения:
1) х²-х-6= 0
D=b²-4ac =1+24=25 √D= 5
х₁=(-b-√D)/2a
х₁=(1-5)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(1+5)/2
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) х²+3х=4
х²+3х-4 =0
D=b²-4ac =9+16=25 √D= 5
х₁=(-b-√D)/2a
х₁=(-3-5)/2
х₁= -8/2
х₁= -4;
х₂=(-b+√D)/2a
х₂=(-3+5)/2
х₂=2/2
х₂=1.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) х²=2х+8
х²-2х-8 =0
D=b²-4ac =4+32=36 √D= 6
х₁=(-b-√D)/2a
х₁=(2-6)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(2+6)/2
х₂=8/2
х₂=4.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
4) 25х²-1=0 (неполное квадратное уравнение).
25х² = 1
х² = 1/25
х = ±√1/25
х₁ = -1/5;
х₂= 1/5.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
1.(x+5)^2=x(x+5)+5(x+5)=x^2+10x+25
2.9y^2-6xy+x^2
3.16-8x+x^2
извини зарядка щас сядет,допишу потом,надо перемножать одночлены,как в первом примере.