М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ArinaYmnaya
ArinaYmnaya
29.02.2020 09:34 •  Алгебра

Найти область определения функции у= квадратный корень из (х+7)(6-х)

👇
Ответ:

 функция имеет смысл,если под корнем положительное число,значит

(х+7)(6-х)≥0

получаем 2 системы

х+7≥0        х+7≤0

6-х≥0   и    6-х≤0

 

х≥-7          х≤-7

х≤6    и     х≥6

 

вторая система не имеет решений,значит область определения 

х∈(-7;6)  где оба конца входят

4,8(24 оценок)
Открыть все ответы
Ответ:
mivaniuk
mivaniuk
29.02.2020
a)
log_{0.5} ( x^{2} -3x)=-2

ОДЗ:
x^2-3x\ \textgreater \ 0

x(x-3)\ \textgreater \ 0
 
    +              -                +
---------(0)----------(3)-------------
///////////                  ////////////////

x ∈ (- ∞ ;0) ∪ (3;+ ∞ )

log_{0.5} ( x^{2} -3x)= log_{0.5} 0.5^{-2}

log_{0.5} ( x^{2} -3x)= log_{0.5} 4

x^{2} -3x= 4

x^{2} -3x-4=0

D=(-3)^2-4*1*(-4)=9+16=25=5^2

x_1= \frac{3+5}{2}=4

x_2= \frac{3-5}{2}=-1

ответ: -1; 4

b)
log^2_{2} (x-2)- log_{2} (x-2)=2

ОДЗ:

x-2\ \textgreater \ 0

x\ \textgreater \ 2

log^2_{2} (x-2)- log_{2} (x-2)-2=0

Замена:  log_{2} (x-2)=t

t^2-t-2=0

D=(-1)^2-4*1*(2)=1+8=9

t_1= \frac{1+3}{2}=2

t_2= \frac{1-3}{2}=-1

log_{2} (x-2)=2   или   log_{2} (x-2)=-1

x-2=4       или       x-2=0.5

x=6         или        x=2.5

ответ:  2,5;  6
 
c)
log_{3} ( x^{2} +2x)\ \textless \ 1

ОДЗ:
x^{2} +2x\ \textgreater \ 0

x(x+2)\ \textgreater \ 0
 
    +              -                +
---------(-2)----------(0)-------------
///////////                  ////////////////

x ∈ (- ∞ ;-2) ∪ (0;+ ∞ )

log_{3} ( x^{2} +2x)\ \textless \ log_{3}3

x^{2} +2x\ \textless \ 3

x^{2} +2x-3\ \textless \ 0

D=2^2-4*1*(-3)=4+12=16

x_1= \frac{-2+4}{2}=1

x_2= \frac{-2-4}{2}=-3

     +                -                  +
----------(-3)-----------(1)--------------
               /////////////////

С учётом ОДЗ получаем

ответ: (-3;-2) ∪ (0;1)

d)
log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ 2

ОДЗ:
0.1x-5.2\ \textgreater \ 0

0.1x\ \textgreater \ 5.2

x\ \textgreater \ 52

log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ log_{ \frac{1}{3} } \frac{1}9}

0.1x-5.2\ \textless \ \frac{1}9}

0.1x\ \textless \ \frac{1}9} +5 \frac{1}{5}

0.1x\ \textless \ \frac{5}{45} +5 \frac{9}{45}

0.1x\ \textless \ 5 \frac{14}{45}

\frac{1}{10} x\ \textless \ \frac{239}{45}

x\ \textless \ \frac{239}{45} *10

x\ \textless \ 53 \frac{1}{9}

С учётом ОДЗ получаем

ответ: (52;53 \frac{1}{9})
4,6(50 оценок)
Ответ:
kalymkulovramaz
kalymkulovramaz
29.02.2020

Даны координаты вершин пирамиды:

A(4, 4, -10) ; B(4, 10, 2) ; C(2, 8, 4) ; D(9, 6, 4).

1) уравнение плоскости АВС и ее нормальный вектор

Находим векторы АВ и АС.

АВ = (0;6; 12), АС = (-2; 4; 14).

Их векторное произведение равно.

i           j         k |         i         j

0         6        12 |        0         6

-2        4        14 |       -2         4 = 84i - 21j +0k - 0j - 4+ 12k = 36i - 24j + 12k.

Нормальный вектор к плоскости АВС равен (36; -24; 12).

Его же можно выразить, разделив на кратную величину 12:

(3; -2; 1).

Уравнение плоскости АВС найдём по точке А и нормальному вектору :  A(x − x0) + B(y − y0) + C(z − z0) = 0

Если теперь в уравнении раскрыть скобки и привести подобные члены, получим общее уравнение плоскости:

Ax + By + Cz + D = 0 ,

где D = −Ax0 − By0 − Cz0, A = 3, B = -2, C = 1, точка A(4, 4, -10).

Найдём значение D:

D = -3*4 - (-2)*4 - 1*(-10) = -12 + 8 + 10 = 6.

Уравнение АВС: 3x - 2y + z + 6 = 0.

2) отрезки, которые отрезает плоскость АВС от осей координат.

Для этого уравнение плоскости АВС представить в "отрезках".

Уравнение АВС: 3x - 2y + z + 6 = 0.

3x - 2y + z = -6. Разделим обе части уравнения на -6:

(3/-6)x - (2/-6)y + (1/-6)z = 1.

Получаем: (-1/2)x + (1/3)y + (-1/6)z = 1.

Это и есть длины отрезков, отсекаемые плоскостью АВС на осях:

Ох: (-1/2), Оу: (1/3), Oz: ((-1/6).

3) уравнение плоскости pi, которое проходит через вершину D параллельно к грани ABC.

Общее уравнение заданной плоскости имеет вид:

Ax+By+Cz+D=0                                   (2)

Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (2) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (2). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (2):

Ax0+By0+Cz0+D=0. (3)

Решим (3) относительно D:

D=−(Ax0+By0+Cz0) (4)

Координаты нормального вектора определены:

A =  3, B = −2, C =  1.

Подставляя координаты точки D и координаты нормального вектора в (4), получим:  

D=−(Ax0 + By0 + Cz0) = −(3*9 +  (−2)*6 +1*4) =  −19.

Подставляя значения A, B, C, D в (2), получим уравнение плоскости, проходящей через точку D(9, 6, 4) и параллельной плоскости ABC:

3 x  − 2  y +  z − 19 = 0.

4,8(36 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ