Имеем:f(x)=2x^4-x+1; f'(x)=(2x^4-x+1)'=8x^3-1
Из уравнения f'(x)=0, или 8x^3-1=0, находим стационарные точки функции f(x):
8x^3=1
x^3=1/8
x=1/2=0.5
В данном случае одна стационарная точка.
В интервал [-1, 1] попадает эта точка 1/2. В ней функция принимает значение f(1/2)=f(0.5)=2*(0.5)^4-0.5+1=5/8=0.625.
В крайних точках интервала [-1,1] имеем: f(-1) = 2*(-1)^4-(-1)+1=4; f(1)=2*1^4-1+1=2.
Из трех значений f(1/2)=f(0.5)=0.625, f(-1) =4, f(1) =2 наименьшим является 0.625, а наибольшим 4.
Поэтому минимальное значение функции f(x)=2x^4-x+1в интервале [-1,1] равно 0.625, максимальное 4.
Каждая команда играет 30 матчей (15 команд-соперниц * 2 тура)
Две команды, занявшие первые места, набрали максимальное количество очков если победили во всех играх, кроме игр между собой (очных встречах)
Таким образом по 28 побед на команду*3*2 = 28*6=168
Плюс в очных встречах они могут играть вничью (2 очка на двоих) или победить (одной команде 0, другой 3, но в сумме 3 на двоих)
Поэтому в двух этих играх для получения максимума должна победить одна из команд.
Неважно какая, потому что сумма за 2 матча = 6 очков
168+6 = 174
ответ: Б(174)
это будет 6 так как из этих 4 линий можно предположить что это кводрат значит ад=6