если число больше 0, и оно есть в обеих сторонах неравенства, то мы можем на него сократить без изменения знака
1. a+b>=0
a^3+b^3 >= a^b + ab^2
(a+b)(a^2-ab+b^2) >= ab(a+b) сокращаем на a+b при a+b = 0 это неравенство превращается в равенсто
a^2-ab+b^2 >= ab
a^2-2ab+b^2>=0
(a-b)^2>=0 квадрат всегда больше равен 0
2. ab>0
a/b + b/a >=2
a/b + b/a - 2 >=0
(a^2+b^2 - 2ab)/ab >=0
(a-b)^2/ab >= 0
ab>0 (a-b)^2>=0 первое по условию , второе по определению квадрата
3. ab/c + ac/b + bc/a >= a+b+c при a b c >0
(a^2b^2/abc + a^2c^2/abc + b^2c^2)/abc - abc(a+b+c)/abc >=0
знаменатель отбросим он всегда больше 0 a*b*c>0
2(a^2b^2 + a^2c^2 + b^2c^2 - a^2bc - b^2ac - c^2ab)/2 >=0
умножаем на 2 числитель и знаменатель
(a^2b^2 + a^2c^2 - 2a^2bc + a^2b^2 + b^2c^2 - 2b^2ac + a^2c^2+b^2c^2 - 2c^2ab)/2 >=0
(a^2(b^2-2bc+c^2) + b^2(a^2-2ac+c^2) + c^2(a^2-2ab+b^2))/2 >=0
(a^2(b-c)^2 + b^2(a-c)^2 + c^2(a-b)^2)/2 >=0
слева сумма квадратов деленное на положительное число, всегда больше равно 0
Объяснение:
5/4 и 3/2 = (3 * 2) /(2 * 2) = 6/4; б) 2/3 = (2 * 5)/(3 * 5) = 10/15 и 2/15 в) 7/15 = (7 * 3)/(15 * 3) = 21/45 и 5/9 = (5 * 5)/(9 * 5) = 25/45; г) 1/6 = (1 * 5)/(6 * 5) = 6/30 и 3/10 = (3 * 3)/(10 * 3) = 9/30; д) 1/3 = (1 * 6)/(3 * 6) = 6/18 и 5/18 е) 5/8 = (5 * 3)/(8 * 3) = 15/24 и 2/3 = (2 * 8)/(3 * 8) = 16/24; ж) 1/2 = (1 * 15)/(2 * 15) = 15/30 и 2/15 = (2 * 2)/(15 * 2) = 4/30; з) 5/12 = (5 * 5)/(12 * 5) = 25/60 и 7/15 = (7 * 2)/(15 * 2) = 14/30; и) 3/10 = (3 * 10)/(10 * 10) = 30/100 и 33/100.
По идеии, если х=-1,5, то у должен ровняться 0.