 
                                                 
                                                cn = n² - 1
проверяем все заданные числа:
1=n² - 1
n²=0
n=0, т.к. n должно ∈n, то делаем вывод, что число 1 не является членом прогрессии
2=n² - 1
n²=3
n=±√3, т.к. n должно ∈n, то делаем вывод, что число 2 не является членом прогрессии
3=n² - 1
n²=4
n=±√4 = ±2, т.к. n должно ∈n, то делаем вывод, что число 3 будет является членом прогрессии (втолрой ее член).
делаем проверку:
найдем c2: c2=4-1=3 - верно
4=n² - 1
n²=5
n=±√5, т.к. n должно ∈n, то делаем вывод, что число 4 не является членом прогрессии
ответ: число 3 является членом прогрессии
 
                                                Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . 
 А за у дней может закончить Алиса, тогда еѐ производительность равна / у . 
 Т.к. они могут напечатать курсовую работу за 6 дней, 
то /х + /у = 1/  
 Если сначала % = / части курсовой напечатает Катя, 
 а затем завершит работу Алиса, то Алисе остается 
% = / части курсовой. 
 Вся курсовая работа будет выполнена за 12 дней т.е. 
 ( /) х + (/ ) у = .
  Решим систему: 
 /х + /у = / ,
  (/) х + (/ ) у = .
   + = , 
 + = ; 
  у = − , ;
 + * ( − , ) = *( − , )
  у = − , ;
 , ² − + = ; 
 у = − , ;
 ² − + = ; 
 ² − + = ; 
 =  , у = 
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. 
 Значит, Катя может напечатать курсовую работу за 10 дней. 
 ответ. за 10 дней
 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
3y+4=3-2y
3y+2y=3-4
5y=-1
y=-1/5