на смену x и y функции y= 2x²-2x -5 вставляем координаты:
a(-2; 17)
17=2*(-2)²-2*(-2)-5
17=2*4+4-5=8+8-5=11
17≠11 не принадлежит
в(-1; 5)
5=2*(-1)^2-2*(-1)-5
5=2+2-5=-1
5≠-1 не принадлежит
с(1; -1);
-1=2*(-1)²-2*(-1)-5
-1=2+2-5=-1
-1=-1 принадлежит
м(2; 10);
10=2*(2)²-2*10-5
10=2*4-20-5
10=8-25= -17
11≠-17 не принадлежит
к(1.1/2; 3)
3=2*(5/2)²-2*(5/2)-5
3=2*25/4-10/2-5
3=12,5-5-5
3=12,5-10
3≠2,5 не принадлежит
р(1/4; 94,5)?
94,5=2*(1/4)²-2*(1/4)-5
94,5=2*1/16-2/4-5
94,5=1/8-1/2-5
94,5≠-47/16 не принадлежит
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.