М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Zhanelka1028
Zhanelka1028
04.09.2020 21:02 •  Алгебра

Точка м(4; -1) принадлежит прямой, определяемой уравнением: 1) 12х-7у-29=0 2) 4х-6у-41=0 3) 6х+6у-8=0 4) 7х-12у решить хотя бы одно, просто я понятия не имею, как они решаются. !

👇
Ответ:
nikitabordkin
nikitabordkin
04.09.2020
Чтобы определить ∈ ли точка прямой нужно в уравнение прямой вместо x и y подставить координаты точки.
Координаты точки М: x=4; y=-1
1)12x-7y-20=0⇒12*4-7*(-1)-29=48+7-29=26≠0⇒точка М ∉ данной прямой
2) 4x-6y-41=0⇒4*4-6*(-1)-41=16+6-41=-19≠0⇒точка М ∉ данной прямой
6) 6x+6y-8=0⇒6*4+6*(-1)-8=24-6-41=-23≠0⇒точка М ∉ данной прямой
4) 7x-12y-40=0⇒7*4-12*(-1)-40=28+12-40=0⇒точка М ∈ данной прямой
4,5(51 оценок)
Открыть все ответы
Ответ:
avoka
avoka
04.09.2020
1. sinα = -24/25, α∈(π;3π/2)
cos²α = 1 - sin²α
cos²α = 1 - 576/625
cos²α = 49/625, cosα= -7/25 (перед дробью знак минус, т.к. α∈(π;3π/2) , а косинус в этом промежутке отрицательный)

2. sin (3π/2 - 2x) = sinx, (3π/2 ; 5π/2)
Применяем формулы приведения, и получаем:
-cos2x = sinx |:(-1)
cos2x = -sinx
cos²x-sin²x = -sinx
cos²x-sin²x+sinx = 0
1 - sin²x - sin²x + sinx = 0
-2sin²x + sinx + 1 =0
Делаем замену: sinx=a
-2a² + a + 1 = 0
D = 9, √D = 3
a1 = 1, a2 = - 1/2

sinx = 1             sinx = -1/2
x = π/2 + 2πn    x = (-1)^n arcsin(-1/2) + πn
                         x=(-1)^n+1  π/6 + πn

Перебираем корни:
n=0                            n=1                             n=2
x=π/2 - не подходит   x=5π/2 - подходит       x=9π/2 - не подходит
x=-π/6 - не подходит  x=7π/6 - не подходит   x=11π/6 - подходит

n=3
x=13π/2 - не подходит
x=19π/6 - не подходит. 

Дальше корни будут больше, и не войдут в промежуток. Значит, только 2 корня
4,6(100 оценок)
Ответ:
alexandra152
alexandra152
04.09.2020
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0
в x^3+3*x-5. 
Результат: y=-5. Точка: (0, -5)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение  и его корни будут точками пересечения с X:
x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417.         Точка: (1,15417, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0
Решаем это уравнение и его корни будут экстремумами:
x = √-1  - нет решения и нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной
4,7(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ