task/30061578 Известно , что число √2 является корнем уравнения x³ - (а+2)x²+bx-2a =0 (а и b -целые ) . Найдите значения а и b и остальные корни уравнения.
решение √2 корень уравнения ,следовательно :
(√2)³ - (а+2)*(√2)² + b*√2-2a =0 ⇔ (2+b)√2 - 4(a+1) =0 ; a , b ∈ ℤ ⇒
2+b =0 , т.е. b = - 2 ; 0 - 4(a+1) = 0 ⇔a+1 = 0 ⇒ a = - 1 .
Определили коэффициенты a и b. Получили определенное уравнение: x³- x²-2x + 2 =0 ⇔x²(x -1) -2(x -1) =0⇔ (x-1)(x²-2) =0⇔ (x-1)(x-√2)(x+√2) =0.
[ x = -√2 ; x =1 ; x =√2 .
ответ: a = - 1 , b = - 2 . x = { -√2 ; 1 ; √2 } .
например 9, мы знаем, что корень этого числа 3
то есть мы 9 поднесли под корень √9=3
то же самое √7=√7
а вот например √18=3√2 ( так как 18 разлаживается на 9 и 2, из 9 можно извлечь корень ⇒3√2 √2 остается)