См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
t +π/5 = (-1)^n*arcsin(√2/2) + πn, n∈Z
t +π/5 = (-1)^n*(π/4) + πn, n∈Z
t = (-1)^n*(π/4) - π/5 + πn, n∈Z
2) сos (2t +П/4)=0
2t + π/4 = π/2 + πk, k∈Z
2t = π/2 - π/4 + πk, k∈Z
2t = π/4 + πk, k∈Z
t = π/8 + πk/2, k∈Z
3) tg(t/2- П/2) = - √3
- tg( π/2- t/2) = - √3
- ctg(t/2) = - √3
ctg(t/2) = √3
t/2 = arctg(√3) + πn, n∈Z
t/2 = π/3 + πn, n∈Z
t = 2π/3 + 2πn, n∈Z
4) сos^ 2(2t + π/6) = 1/2
a) сos(2t + π/6) = -√2/2
2t + π/6 = (+ -)*arccos(-√2/2) + 2πk, k∈Z
2t + π/6 = (+ -)*(π - π/4) + 2πk, k∈Z
2t + π/6 = (+ -)*(3π/4) + 2πk, k∈Z
2t = (+ -)*(3π/4) - π/6 + 2πk, k∈Z
t1 = (+ -)*(3π/8) - π/12 + πk, k∈Z
b) сos(2t + π/6) = √2/2
2t + π/6 = (+ -)*arccos(√2/2) + 2πk, k∈Z
2t + π/6 = (+ -)*(π/4) + 2πk, k∈Z
2t = (+ -)*(π/4) - π/6 + 2πk, k∈Z
t2 = (+ -)*(π/8) - π/12 + πk, k∈Z
5) ctg^ 2(2t - П/2)= 1/3
a) ctg(2t - П/2)= - √3/3
2t - π/2 = arcctg(-√3/3) + πn, n∈Z
2t - π/2 = 2π/3 + πn, n∈Z
2t = 2π/3 + π/2+ πn, n∈Z
2t = 7π/6 + πn, n∈Z
t1 = 7π/12 + πn/2, n∈Z
b) ctg(2t - П/2)= √3/3
2t - π/2 = arcctg(√3/3) + πn, n∈Z
2t - π/2 = π/3 + πk, n∈Z
2t = π/3 + π/2+ πk, n∈Z
2t = 5π/6 + πk, n∈Z
t2 =5π/12 + πk/2, n∈Z
6) tg ^2 (3t+П/2)=1/3
a) tg (3t+π/2) = - √3/3
-ctg(3t)= -√3/3
ctg(3t)= √3/3
3t = arcctg(√3/3) + πn, n∈Z
3t = π/3 + πk, n∈Z
t1 = π/9 + πk/3, n∈Z
b) tg (3t+π/2) = √3/3
ctg(3t)= - √3/3
3t = arcctg(-√3/3) + πn, n∈Z
3t = 2π/3 + πn, n∈Z
t = 2π/9 + πn/3, n∈Z
7) 3 cos ^2t - 5 cos t = 0
cost(3cost - 5) = 0
a) cost = 0
t = π/2 + πn, n∈Z
b) 3cost - 5 = 0
cost = 5/3 не удовлетворяет условию: I cost I ≤ 1
8) !sin 3t! =1/2
a) sint = - 1/2
t = (-1)^(n)*arcsin( - 1/2) + πn, n∈Z
t = (-1)^(n+1)*arcsin(1/2) + πn, n∈Z
t1 = (-1)^(n+1)*(π/6) + πn, n∈Z
b) sint = 1/2
t = (-1)^(n)*arcsin(1/2) + πn, n∈Z
t2 = (-1)^(n)*(π/6) + πn, n∈Z