М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tolokvlad
tolokvlad
03.05.2023 01:24 •  Алгебра

Представте выражение 4х2(степень)-3х-х+5 в виде суммы двучленов

👇
Ответ:
suhtuevaa
suhtuevaa
03.05.2023
4х2(степень)-3х-х+5=4х²-4х+5
4,7(75 оценок)
Открыть все ответы
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Ответ:
FrostMorne
FrostMorne
03.05.2023

Пусть дан т-к АВС. 

Продлим медианы на их длину ( см. рис)

По свойству диагоналей параллелограмма 

АА1²+ВС²=2(АВ²+АС²)

и

СС1²+АВ²=2(АС²+ВС²)

Пусть АВ=с, ВС=а

Составим систему уравнений:

[(2*6√7)²+a²=2(c²+14²)

[(2*3√7)²+c²=2(14²+a²)

⇒ 

[ а²-2с²=2*14² -144*7 

[-2а²+с²=2*14²-36*7 домножим на 2 обе стороны этого уравнения.

Сложим уравнения системы:

[а²-2с=2*14² -144*7 

[-4а²+2с²=4*14²-72*7

-3а²=6*14²-216*7⇒

а²=112

а=4√7

Подставим найденное значение а в уравнение 

а²-2с²=2*14² -144*7 ⇒ 

112+144*7-2*196=2 с²

с²=364

с=2√91

АВ=2√91

ВС=4√7 

---------

Задачу можно решить по т. косинусов.

Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

Тогда АО=4√7, CO=2√7

Из ∆ АОС 

АС²=АО²+СО²-2*АО*СО*cos ∠АОС

cos ∠АОС=(АС²-АО²+СО²):(-2*АО*СО)

cos ∠АОС=[14²-(4√7)²-(2√7)²]:[-2*(4√7)*(2√7]

cos ∠АОС= -56:2*56= -1/2 - это косинус 120º

В ∆ СОК ∠ СОК =180°-120°=60°

ОК=АК:3=2√7

ОК=ОС, угол СОК=60°⇒

∆ СОК - правильный, СК=2√7, 

ВС=2 СК=4√7

В Δ АМО ∠ МОА=∠ СОК=60°

АМ²=МО+АО-2*МО*АО*cos∠АОМ

АМ²=(√7)²+(4√7)²-2*(√7)*(4√7)*1/2*cos∠АОМ

АМ²=7+16*7-2*4*7*1/2

АМ²=91

АМ=√91

AB=2√91


Основание треугольника равно 14 см, а медианы, проведенные к боковым сторонам — 3 корень из7 и 6 кор
4,4(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ