Поскольку левая и правая части уравнения есть четные функции, то единственным корнем уравнения может быть только х=0. Поэтому параметр а должен удовлетворять условию , откуда а=3 или а=-2 Построив графики функций и , при этих значениях параметра а, видим, что при а=3 уравнение имеет 3 решения, а при а=-2 - одно решение
Верное условие Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч Скорость V >4 км/ч; V< 6км/ч 4Путь S=? S=V•t Наименьшее S>4•3 Наибольшее S<6•3 Записываем так 12 ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями 1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем 2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем от 12<путь<18 ответ: мог пройти больше 12 км и меньше 18 км.
Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
Поскольку левая и правая части уравнения есть четные функции, то единственным корнем уравнения может быть только х=0. Поэтому параметр а должен удовлетворять условию
Построив графики функций
ответ: а=-2.