2.Тираж одной популярной газеты ежемесячно увеличивается на 200 экземпляров.Сколько экземпляров этой газеты будет выпущено за год, если в январе этого года ее тираж составлял 5200 экземпляров?
5200*12+200*11=64 600 выпущено за год
1.Найдите четыре числа, образующих геометрическую прогрессию, третий член которой больше первого на 12, а второй больше от четвертого на 24. bn=b1q*(n-1) b1 b2=b1q b3=b1q² b4=b1q³
1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
x(3*a5)*a2 или x3*(2*x5)a
a(2*c10*c)c4 или a2*(4*a10*a)