Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
первое число дает остаток 1 при делении на 4 значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1 число 1 при делении на 4 дает остаток 1 итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4 значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27 число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4, так как 4 при делении на 4 дает остаток 0, то сумма кубов этих чисел кратна 4 ---------------------------------- второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел а значит сумма кубов делится нацело на 4. Доказано
17+12√2-2√2(2√2+3)=17+12√2-8-6√2=9+6√2=3(3+2√2) ---это числитель
делим на( 2√2+3) скобки сокращаются и получается 3