2/3.
Объяснение:
Упростить:
[1/(b-√a) +1/(b+√a)] ; (√9*a⁻²b⁻¹)/(a⁻²-a⁻¹b⁻²)=
1)В скобках:
[1/(b-√a) +1/(b+√a)]=
общий знаменатель (b-√a)(b+√a)=b²-a (разность квадратов):
=[1*(b+√a)+1*(b-√a)] / b²-a=
=(b+√a+b-√a) / b²-a=
=2b/(b²-a);
2)Числитель дроби:
(√9*a⁻²b⁻¹)=
=3*1/а²b=3/(a²b);
3)Знаменатель дроби:
(a⁻²-a⁻¹b⁻²)=
=1/а²-1/аb²=
обший знаменатель а²b²:
=(b²-a)/a²b²;
4)Деление числителя на знаменатель:
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
3/(a²b) : (b²-a)/a²b²=
=(3*a²b²) / (a²b)*(b²-a)=
сокращение а² и а² на а², b² и b на b:
=3b/(b²-a);
5)Деление результата в скобках на результат преобразований дроби:
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
2b/(b²-a) : 3b/(b²-a)=
=[2b*(b²-a)] / [(b²-a)*3b]=
сокращение (b²-a) и (b²-a) на (b²-a), b и b на b:
=2/3.
1. Количество возможных комбинаций, которые могут получиться в результате трех бросков = 2^3 = 8.
Орел не выпадет ни разу - единственная комбинация (три раза выпадает решка).
Значит, вероятность = 1/8 = 0.125.
2. V детали = V воды с деталью - V воды.
V детали = 6*2.1 - 6 = 12.6 - 6 = 6.6
3. Пусть a1 - сторона первого квадрата, d1 - его диагональ, a2 и d2 - соответственно сторона и диагональ второго квадрата, a3 и d3 - третьего (площадь которого равна разности площадей первых двух).
d3 - ?
d3^2 = 2a3^2.
Выразим площади квадратов через их стороны:
a3^2 = a2^2 - a1^2.
Найдем значение выражения a2^2 - a1^2.
2a1^2 = 60^2 => a1^2 = 60^2/2,
2a2^2 = 68^2 => a2^2 = 68^2/2.
Тогда a3^2 = 68^2/2 - 60^2/2 = (68^2-60^2)/2 = ( (68-60)(68+60) ) / 2 = 512.
d3^2 = 2*512 = 1024.
d3 = √1024 = 32.
ответ: 32.
теперь весь пример выглядит так: