Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
1) (х+2)/(3-x)>0
(Х+2)/(х-3)<0
Х=-2; х= 3
Выносим на координатную прямую и ставим знаки на промежутках:
(-беск; -2) +
(-2;3) -
(3; + беск) +
Знак < , значит берем -
ответ: (-2;3)
2) (x-10)/(2-x)<0
(Х-10)/(х-2)>0
Х=10; х=2
Выносим на координатную прямую и ставим знаки на промежутках:
(-беск; 2) +
(2;10) -
(10; + беск) +
Знак >, значит берем +
ответ: (-беск; 2), (10;+беск)
3) (x^2 - 6x)/(x^2 - 6x+9)≥0
Х^2-6х=0 х^2-6х+9=0
Х=0;х=6 х=3
Выносим на координатную прямую и ставим знаки на промежутках:
(-беск; 0] +
[0;3) -
(3; 6] -
[6; + беск) +
Знак >= , значит берем +
ответ: (- беск; 0], [6; +беск)
35a 2+7a 2b 2+5b+b 3 =
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2),
который мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3),
который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .