Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
А. Пушкин был человеком широких взглядов, его интересовала жизнь во всех ее проявлениях, и он с удовольствием о ней писал. В своих произведениях писатель размышляет о роли судьбы в жизни человека, высказывает мысль о неизбежности фатума. Автор смело играет судьбами героев, причудливо меняя сюжеты их жизней. Так, в цикле «Повести покойного Ивана Петровича Белкина», А. Пушкин пытается понять, какова роль случая в разных жизненных ситуациях. «Метель» - это несколько страниц рассказа о драматических судьбах русских людей, в чьи жизни ворвались любовь, стихия природы и война.
Найдённые у и х и будут точками пересечения.
y=x^2+4
x+y=6
y=x^2+4
x+ x^2+4 = 6
x+ x^2+4 = 6
x^2+x+4-6=0
x^2+x-2=0
D= 1^2 - 4*(-2) = 1+8 = 9
√9 = 3
x1= (1-3)/2 = -2/2 = -1
x2=(1+3)/2 = 4/2 = 2
Находим у - ки
y1 = (-1)^2 + 4 = 1+4 = 5
y2=(2)^2 + 4 = 4+4 = 8
ответ: точки пересечения
(-1; 5) и ( 2 ; 8 )