Нам дана 4-угольная пирамида, у которой все ребра равны. Значит, в основании у нее лежит квадрат. Пусть сторона квадрата равна а. Радиус круга, в который вписан квадрат, равен R = a/√2 = a√2/2 Боковые ребра пирамиды тоже равны а. Найдем ее высоту. Отрезок ОА от центра основания до угла равен радиусу, R = a/√2. OAS - это прямоугольный треугольник, AS = a; OA = a/√2. OS = H = √(AS^2 - OA^2) = √(a^2 - a^2/2) = √(a^2/2) = a/√2 = R Высота пирамиды равна радиусу описанной окружности ее основания. Это и означает, что этот радиус и есть радиус шара. То есть центр основания совпадает с центром шара.
1) угловой коэффициент k=-0,7 2) х=2у+2 2у=х-2 у=х/2-1 Угловой коэфф. к=1/2 3) -5х+3у+16=0 3у=5х-16 у=5х/3-16/3 Угловой коэфф. k=5/3 № 3. 1) (х-3)²+(у-1)²=9 (х-3)²+(у-1)²=3² Графиком будет окружность с радиусом 3 с центром в точке с координатами (3; 1) 2) у=(х-2)²-1 у=х²-4х+4-1 у=х²-4х+3 График функции - парабола, ветви направлены вверх ( а>0) Нули функции х1=1 и х2=3. (Точки пересечения с осью ОХ) При х =0, у=3 - точка пересечения с осью ОУ 3) у=х²-2 График - парабола ветвями вверх. При х=0, у=-2.