Если нельзя посадить еще одного человека за стол так, чтобы рядом с ним никто не сидел, то максимальное число подряд идущих пустующих стульев равно 2. Т. е. имеем такую последовательность: 2 пустых стула, один занятый, 2 пустых, 1 занятый и т. д. Видим, что данную последовательность можно разбить на тройки (по одному занятому стулу и двум пустым). Поскольку стульев всего 20, а 20 = 3*6 + 2 дает в остатке 2, то у нас выходит 6 занятых стульев плюс еще один занятый, итого минимум 7 человек могут изначально сидеть на стульях.
ответ: 7 человек.
1.
ОДЗ: арксинус определен при
Найдем синус левой и правой части:
Уравнение распадается на два. Для первого уравнения получим:
Решаем второе уравнение:
Таким образом, уравнение имеет единственный корень 0.
ответ: 0
2.
ОДЗ: арксинус определен при
Найдем синус левой и правой части:
Так как в правой части стоит положительная величина, то и левая часть должна быть положительной, то есть .
Возведем в квадрат обе части:
Решим биквадратное уравнение:
Находим х:
Однако, так как было выявлено ограничение , то отрицательный корень не попадает в ответ.
Оценив значение полученного корня, мы понимаем, что он удовлетворяет исходной ОДЗ:
ответ: