Пусть хx литров в минуту пропускает вторая труба. тогда первая труба пропускает x-4x−4 литров в минуту. зная, что вторая труба заполнит резервуар объемом 320 литров на 10 минут быстрее, чем первая труба заполнит резервуар объёмом 200 литров, составим уравнение: \frac{320}x+10=\frac{200}{x-4}x320+10=x−4200 \frac{320(x^2-4x)}x+10(x^2-4x)=\frac{200(x^2-4x)}{x-4}x320(x2−4x)+10(x2−4x)=x−4200(x2−4x) 320(x-4)+10(x^2-4x)=200x320(x−4)+10(x2−4x)=200x 320x-1280+10x^2-40x=200x320x−1280+10x2−40x=200x 320x-1280+10x^2-40x-200x=0320x−1280+10x2−40x−200x=0 10x^2+80x-1280=010x2+80x−1280=0 x^2+8x-128=0x2+8x−128=0 d_1=4^2+128=144=12^2d1=42+128=144=122 x_1=-4+12=8x1=−4+12=8 x_2=-4-12=-16x2=−4−12=−16 - не удовлетворяет условию значит первая труба пропускает 8 литров в минуту ответ: 8 литров в минуту
Ax+By+C = 0, где A, B, C - это константы, (A и B одновременно не равны нулю) Это общее уравнение прямой на координатной плоскости XOY. Показать (или доказать) это можно разными Так вот: 6x+3y+18 = 0, это уравнение прямой. Чтобы построить эту прямую на координатной плоскости достаточно найти две различные точки, принадлежащие этой прямой. Найдем какие-либо две точки (два частных решения этого уравнения. Например: положим x_1=0, подставим это в уравнение, получим 3y+18 = 0, <=> y = -18/3 = -6. Первая точка это x_1=0, и y_1=-6. Аналогично находим вторую точку прямой: положим y_2=0, подставим это значение в уравнение прямой, получим 6x+18=0, <=> x=-18/6 = -3. Вторая точка у нас имеет координаты x_2=-3 и y_2 = 0. Теперь следует отметить эти точки на координатной плоскости XOY (на графике), затем взять линейку и с ручки или карандаша провести через эти точки прямую линию. Это и будет график данной в условии прямой.