Объяснение:
b₃=b₂+18; b₃=b₁q+18; b₃=b₁q²
b₃=b₁+9; b₃=b₁q²
Система уравнений:
b₁q+18=b₁q²; b₁q²-b₁q=18; b₁q(q-1)=18
b₁+9=b₁q²; b₁q²-b₁=9; b₁(q²-1)=9; b₁(q-1)(q+1)=9
(b₁q(q-1))/(b₁(q-1)(q+1))=18/9
q/(q+1)=2
q=2q+2
q-2q=2
q=-2 - знаменатель геометрической прогрессии.
b₁+9=b₁·(-2)²; b₁+9=4b₁; 9=4b₁-b₁; b₁=9/3=3 - 1-й член геометрической прогрессии.
b₃=3+9=12 - 3-й член геометрической прогрессии.
b₂=12-18=-6 - 2-й член геометрической прогрессии.
b₄=b₃q=12·(-2)=-24 - 4-й член геометрической прогрессии.
b₅=b₄q=-24·(-2)=48 - 5-й член геометрической прогрессии.
Дано двузначное число ab, число десятков которого равна а, а число единиц равно b.
По условию, a²+b²=13 (первое уравнение нашей системы)
Поразрядная запись числа ab - это 10a+b
Число ba записано теми же цифрами, но в обратном порядке.
Его поразрядная запись - это 10b+a
По условию, 10a+b - 9 = 10b +a (это второе уравнение нашей системы)
Составим и решим систему:
{a²+b²=13
{10a+b-9=10b+a
{a²+b²=13
{9a-9b=9 |:9
{a²+b²=13
{a-b=1
{a²+b²=13
{a=b+1
(b+1)²+b²=13
b²+2b+1+b²=13
2b²+2b-12=0 |:2
b²+2b-6=0
b₁= 2
b₂=-3 <0 (не подходит)
Итак, b=2
a=2+1=3
Искомое число 32