Пусть за х(часов)-первая выполнит,а х+5(часов) -выполнит вторая машина. 1/х-производительность первой машины в 1час,а 1/(х+5) -производительность второй.
а 1/6 ч общая производительность за 1час
Составим уравнение: 1/х+1/(х+5)=1/6 - приводим к общему знаменателю- 6*х*(х+5)6х+6х+30=х²+5х х²-7х-30=0
Дискриминант больше 0, уравнение имеет 2 корня: x₁=(13+7)/2=20/2=10; x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное. ТОГДА
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
очевидно:
cos(2x -π/6) =cos2x*cosπ/6 +sin2x*sinπ/6 =cos2x*√3 /2 +sin2x*1/2 =(√3cos2x+sin2x) /2 ⇒ √3cos2x+sin2x =2cos(2x -π/6) , поэтому производя замену t = cos(2x -π/6) ; -1≤ t ≤1 исходное уравнение принимает вид:
4t² -3t -7 =0 ; D =3² -4*4*(-7) =9 + 112 =121 =11²
t₁ =(3+11) / 8 = 7/4 >1 не решение
t₂ = (3 -11) / 8 = -1 ⇒(обратная замена)
cos(2x -π/6) = -1 ⇒ 2x - π/6 =π +2π*n , n ∈Z ;
x =7π/12 + π*n , n ∈Z .
ответ: 7π/12 + π*n , n ∈Z .
* * * * * * *
√3cos2x +sin2x= 2( (√(3) /2)* cos2x +(1/2)*sin2x )=
2(cos2x*cosπ/6 +sin2x*sinπ/6)=2cos(2x - π/6)
вообще (формула вс угла ) :
acosx +bsinx =√(a² +b²)*(a/√(a² +b²) *cosx +b/√(a² +b²)*sinx) =
√(a² +b²)*(cosα *cosx +sinα*sinx) =√(a² +b²)*cos(x - α) , где α =arcctqa/b